BLM Ortholog, Sgs1, Prevents Aberrant Crossing-over by Suppressing Formation of Multichromatid Joint Molecules

نویسندگان

  • Steve D. Oh
  • Jessica P. Lao
  • Patty Yi-Hwa Hwang
  • Andrew F. Taylor
  • Gerald R. Smith
  • Neil Hunter
چکیده

Bloom's helicase (BLM) is thought to prevent crossing-over during DNA double-strand-break repair (DSBR) by disassembling double-Holliday junctions (dHJs) or by preventing their formation. We show that the Saccharomyces cerevisiae BLM ortholog, Sgs1, prevents aberrant crossing-over during meiosis by suppressing formation of joint molecules (JMs) comprising three and four interconnected duplexes. Sgs1 and procrossover factors, Msh5 and Mlh3, are antagonistic since Sgs1 prevents dHJ formation in msh5 cells and sgs1 mutation alleviates crossover defects of both msh5 and mlh3 mutants. We propose that differential activity of Sgs1 and procrossover factors at the two DSB ends effects productive formation of dHJs and crossovers and prevents multichromatid JMs and counterproductive crossing-over. Strand invasion of different templates by both DSB ends may be a common feature of DSBR that increases repair efficiency but also the likelihood of associated crossing-over. Thus, by disrupting aberrant JMs, BLM-related helicases maximize repair efficiency while minimizing the risk of deleterious crossing-over.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delineation of Joint Molecule Resolution Pathways in Meiosis Identifies a Crossover-Specific Resolvase

At the final step of homologous recombination, Holliday junction-containing joint molecules (JMs) are resolved to form crossover or noncrossover products. The enzymes responsible for JM resolution in vivo remain uncertain, but three distinct endonucleases capable of resolving JMs in vitro have been identified: Mus81-Mms4(EME1), Slx1-Slx4(BTBD12), and Yen1(GEN1). Using physical monitoring of rec...

متن کامل

The fission yeast BLM homolog Rqh1 promotes meiotic recombination.

RecQ helicases are found in organisms as diverse as bacteria, fungi, and mammals. These proteins promote genome stability, and mutations affecting human RecQ proteins underlie premature aging and cancer predisposition syndromes, including Bloom syndrome, caused by mutations affecting the BLM protein. In this study we show that mutants lacking the Rqh1 protein of the fission yeast Schizosaccharo...

متن کامل

The Sgs1 Helicase Regulates Chromosome Synapsis and Meiotic Crossing Over

BACKGROUND In budding yeast, Sgs1 is the sole member of the RecQ family of DNA helicases. Like the human Bloom syndrome helicase (BLM), Sgs1 functions during both vegetative growth and meiosis. The sgs1 null mutant sporulates poorly and displays reduced spore viability. RESULTS We have identified novel functions for Sgs1 in meiosis. Loss of Sgs1 increases the number of axial associations, whi...

متن کامل

News from Arabidopsis on the Meiotic Roles of Blap75/Rmi1 and Top3α

Two articles published in this issue of PLoS Genetics present novel data concerning the members of a key regulator of genetic crossing-over. Working with the plant Arabidopsis thaliana, the authors of the two reports provide exciting new data and further understanding of the meiotic anti– crossing-over function of the Topoisomerase 3alpha (Top3a) and Blap75/Rmi1 proteins, and thus presumably th...

متن کامل

Correction: Controlling Meiotic Recombinational Repair – Specifying the Roles of ZMMs, Sgs1 and Mus81/Mms4 in Crossover Formation

Crossovers (COs) play a critical role in ensuring proper alignment and segregation of homologous chromosomes during meiosis. How the cell balances recombination between CO vs. noncrossover (NCO) outcomes is not completely understood. Further lacking is what constrains the extent of DNA repair such that multiple events do not arise from a single double-strand break (DSB). Here, by interpreting s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2007